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temperature integrals pm (x)= .eojx e-Xu-2-mdu with m = 0, 1/2 and 1 are ap- The 

proximated using empirical formulae of the type Ax--Be -cx. For estimation of the precision 
of these approximations, the relative errors were calculated for integral values ofx. It was es- 
tablished that forx < 19 the maximum relative error is 0.26%, while for 1 9  < x -<50 it is less 
than 0.1%. The suggested approximations allow a sensible improvement of the integral 
methods intended to determine the kinetic parameters of the process concerned. 

T h e  t e m p e r a t u r e  in tegra ls  a re  of ten  used  in t he rmograv ime t ry  [1], 
m i c r o c a l o r i m e t r y  [2], t he rm a l  absorp t ion  [3], t he rmoluminescence  [4], ther-  

mal ly  s t imula ted  conduct ivi ty  (T.S.C.) [5], the rmal  oxidat ion [6], etc. 

T h e  p r e s e n t  p a p e r  shows that  these  funct ions can be  app rox ima ted  with 
excel lent  a c c u r a c y  within the intervals  (5, 17) and  (17, 50) by using expres-  
sions of  the  type Ax'Be "cx. 

Kinetics 

The  t he rmograv ime t r i c  s tudy takes  into account  the following equat ion:  

r / dt = ZTme -EIRT ( 1 - c ) n  (1) 

*This paper was presented at the National Congress of Chemistry, Bucuresti, Sept. 11- 
14, 1978; in Abstracts, Pt. 1, 151 (1978). 
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where t is the time, c the conversion, T the absolute temperature (K), E 
the activation energy (cal.mol-1), R the universal gas constant (1.987 cal. 
molldeg -1) (K) -1, n the order of reaction, and Z and rn are constants. 

The parameter m shows the temperature-dependence of the frequency 
factor ZT ~. The empirical form of the Arrhenius equation implies that rn = 
0, while the active collision theory admits m = 1/2 and the Eyring active 
complex theory admits m = 1. 

The present paper takes into consideration all these alternatives, i.e. 
m = 0 ,  m = 1/2 andre = 1. 

Under  non-isothermal conditions, when the heating rate /~ = dT/dt is 
constant, Eq. (1) can readily be integrated, giving 

i--(1--C) Z (E) 'n+l  
1 - n  (2) 

where 
x = E / R T ;  pro(x) =fCee-'u-2-m du, withm = 0, 1/2 and 1. 

The pm (x) integrals will be called "the temperature integrals". The 
numerical values of these functions have been calculated by Vallet [7] (we 
have not been able to acquire his paper), Biergen and Czanderna [8], and 
Saint-Georges and Garnaud [9]. Since the table given for these functions in 
[8, 9] were incomplete, we decided to complete them new values. 

With a view to calculating the po (x) and pl (x) functions, we used the fol- 
lowing relationships: 

po (X) = e-Xxll + Ei ( -x)  
1 p ,  (x) = [ e-X x - 2 -  t'o (x)] 

The values of the exponential integrals Ei(-x) were taken from [10]. For 
the functionpm(x) only the values tabulated by Saint-Georges and Garnaud 
[9] were taken into account. 

The approximations for the temperature integrals 

The function po(X) is frequently used in thermogravimetry. It was called 
"the temperature integral" by MacCallum and Tanner [11]. In most eases, the 
functions proposed to approximate this integral have the form 
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po (X) • e-X R (x) , 

where R(x)  is a rational function of x. In order to exemplify this, we may 
mention the following approximations: 

Doyle [12]: 

Coats and Redfern [13]: 

Doyle [14]: 

po (X) = x-2e  -x  

t,o (X) = (x - 2 ) x -3e  - x  

po (X) = (x + 1 ) x - l e  - x  

Turner and Schnitzer [14]:po (x) ~- (x + 2)-~x-le -x 

Zsak6 [161: po (x) = (x - d )-* (x + 2 ) - le -X  

Hastings [17]: 

where: 
16 

d - x 2 _  4x + 84 

(3) 

(4) 

(5) 

(0 

(7) 

0.995924x + 1.340913 -x 
po (x) ~. x -2  xZ + 3.330657x + 1.681534 e (8) 

x + 4  - x  
Luke [18]: po (x) ~.x -1 x2 + 6x + 4 e (9) 

p o ( x ) ~ . x - 1  x2+ lOx+  18 -x 
x 3 + 12x z + 36x + 24 e (10) 

x 3 + 1 8 x  2 + 8 8 x  + 96 e-X 
po (x) = x  -1 x4 + 20x3 + 120x 2 + 240x + 120 (11) 

The accuracy of these expressions has been estimated both via a direct 
comparison with the tabulated values of the temperature integrals [14, 16- 
21] and in the context of a critical analysis of integral methods for determin- 
ing the kinetic parameters [22-24]. 

Approximation (3) allows the linearization of (2) with the aim of deter- 
mining the kinetic parameters n, Z and E. However, the poor accuracy of 
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this equation reduces the possibility of its practical utilization. Unfortunate- 
ly, the other approximations, i.e. Eqs (4)-(11), even though more accurate, 
do not allow the linearization of Eq. (2). 

The following new approximation for" the temperature integrals is 
proposed in the present paper: 

pm (x) ~ A x - B  e -Oc (12) 

This approximation was suggested by an analysis of the table giving the 
values of log po (x) and its first difference: 

Ao.~ (x) = log po (x + 0.1) - log po (x) 

with (x) = 5, 6, 7, ..... 50. 
By plotting the difference ~.l(x) vs. I/x, it was found that the obtained 

points are situated exactly on two segments that intersect at x = 17. For 
each of these segments we can write 

A0.1 (x) = ml + n/ with i = 1, 2 
X 

Approximating the difference by a differential and integrating it, we 
finally found expression (12). 

The suggested function contains three parameters, whose values are 
determined by the method of least squares. In addition, since the function 
po (x) diminishes rapidly, it is preferable to minimize the sum of the relative 
error squares, instead of the sum of the squares of the errors. These calcula- 
tions were carried out by means of a FELIX C 32 computer and the ob- 
tained values are listed in Table 1. 

Table 1 also presents the variation domain ofx. The parameters A, B and 
C corresponding to the other two temperature integrals pl/2(x) and pa(x), 
were similarly obtained for each of the considered intervals (see Table 1). 

The approximate values of these three integrals can be obtained by 
replacing the numerical values of A, B and C in relation (12). 

In order to appreciate the precision of the suggested approximations, we 
have tabulated the three functions for all values of the integer x (i.e. x ~[5- 
50] forpo (x) andpl(x) ,  and [9-501 forpl/2(x)). 

J. Therma/Ana/., 36~ 1990 
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Table I The values of the paramctzrs A, B, C and C' (see Eqs (12) and (13)) for m = 0, I/2 and I 

m x A B C C' 

interval 

m = 0 [5, 17] 0.50704 1.72760 1.01179 0.2211 
[17, 50] 0.67102 1.88582 1.00174 0.2190 

m = 1/2 [9, 17] 0.47977 2.23161 1.00925 0.2206 
[17, 50] 0.61749 2.36330 1.00203 0.2190 

m = 1 [5, 17] 0.38827 2.62868 1.01552 0.2220 
[17~ 50] 0.56639 2.83930 1.00236 0.2191 

The relative errors were determined according to the equation: 

Rel. error  = P,. (x) -An, (x). 100% 
P., (x) 

where P,, (x) are exact values of  the pm (x) integrals, while Am (x) are the cor- 
responding values calculated with the approximate (12). 

Analysis of  the obta ined data  indicates that  for x < 19 the maximum 
relative error is 0.26%, and that  for 19 _< x -< 50 the relative error  is less 
than  0.1%. 

Consequently,  by using approximation (12), the TG and DTG curves can 
be s imulated precisely, even for high numerical  values of Z and E [25] (rapid 
process).  

Integral methods 

Taking approximat ion (12) into account,  the following relationships can 
be wri t ten for each of  the two intervals, x -< 17 and x > 17, by taking 
logarithms of Eq. (2): 

log 1 - ( 1 - c ) 1 - "  Z / \ E E  - = l o g  /3A~-~}'+IB--C'~ ( n ; e l )  
T S ( 1 - n )  

log (1 - c ) E E- l 

Z ThermalAnal., 36, 1990 
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where C' = C loge 
R 

On the basis of these relationships for each of the two intervals (x < 17), 

the plot of log 1 - (1 - c )1-~ (1 - n ) T s vs. 1 / T will  be a line segment with slope - 

C'E.  Obviously, the parameters A, B and C used in the calculations have the 
values corresponding to the respective interval (Table 1). 

Usually, in the thermally decomposition of polymers, x > 17. This fact al- 
lows the replacement of the appropriate values of A, B and C in Eq. (13). In 
this case, the corresponding plot will be reduced to a single line segment. If 
we consider that during the final part of the thermal degradation process, x 
< 17, the plot obtained with the values of A, B and C corresponding to the 
interval x > 17 will present a very slight curvature, which will not influence 
the determination of the kinetic values of the parameters n, E and Z. 

In order to determine the activation energy relating to thermograms 
recorded at different heating rates, we shall consider that in relation (13) 
the heating rate changes and c remains constant. Hence, we can write 

T B 
log ~ = const. + C' (14) 

T / i  

In this case, taking into consideration the reasons presented above, the 
activation energy will be obtained from the slope of the linear plot 

T B 
log-fl-  vs. 1 /  T. 
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Zusmnoomenfassung - Ffir m = 0, 1/2 und 1 werden Temperaturintegrale der Form 
pm (x) = f'x e -Xu  - z - m  du mit empirischen Formeln des Types Ax --Be - -~  niherungsweise 

berechnet. 
Zur  Bestimmung der  Genauigkeit dieser N~iherung wurde ffir Integralwerte yon x der 

relative Fehler  berechnet. Der  maximale relative Fehler liegt ff i rx < 19 bei 0.26% und ist im 
Intervall 19 < x < 50 kleiner als 0.1%. 

Die vorgeschlagenen Naherungen erlauben eine wesentliehe Verbesserung yon Integrier- 
methoden zur Bestimmung kinetischer Parameter diesbezfiglieher Prozesse. 
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